LINEAR END STROKE SENSOR SERIES LES1000

The LES1000 End Stroke Sensor (see Fig. 1 and Fig. 2) aims to detect the presence of nearby objects without any physical contact, having a linear motion in distance, or closed to be linear.

The principle is based on Eddy current sensor (ECS) technology from CEDRAT TECHNOLOGIES (CTEC): This sensor generates an AC magnetic field at high frequency and senses the behavior of the induced magnetic field in regards of a conductive target (Aluminum is preferred).

An output signal (ON/OFF type) is generated when the target enters in the switching distance (Fig. 3). This new technology has the following features w.r.t former state of the art:

- Enhanced reliability
- Contactless detection
- Ultra-Long lifetime
- High cost efficiency for space recurrent manufacturing
- High accuracy switching output

The LES1000 is a contactless electromechanical micrometric switch, to be used as alternate approach compared to classical mechanical end stops, which require contact. The mechanical alignment is easy and cannot be affected by thermal gradient.

No external actuation force is necessary and any possible damage on the component due an excess of travel is suppressed, thanks to the non-contact detection.

This product could be customized with different ranges (1 mm up to 3 mm) and could be used in several applications like:

- End-Position Sensor for Hatch Axis,
- Release Sensor with Crash Pad,
- Angular position detection (for example in deployment mechanisms).

This product is compatible with large voltage range and large temperature range without drift of its performances.

The performances are summarised in the Table 1.

Fig. 1: View of the LES1000 proximity sensor

Fig. 2: Construction of the LES1000 proximity sensor

Fig. 3: Example of conductive target detection and relative output voltage

PERFORMANCES	VALUES	UNITS
Switching distance	>1	mm
Repeatability	$+/-0.1$	mm
Hysteresis	<0.1	mm
Integration bias	$+/-1$	mm
Response time	<1	ms
Power supply	$3.3-5$	V
Output signal level	Low<0.4 and High>1.9	V
Power consumption	<100	mW
Operating temperature	$-55 ;+90$	${ }^{\circ} \mathrm{C}$
Mass	10.8	grams
volume	Dia 15×26	mm
Harness Length	<5	m
Rad Tolerant	<100	kRad
Outgassing	$\mathrm{TML}<1$	$\%$
Vacuum compatibility	$\mathrm{CVCM}<0.1$	$10-9$

Table 1: Performances of the LES1000
The reached Technology Readiness Level is TRL5. This product was developed in the field of the CNES contract R-S16/TG-0002-118.

